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Abstract

This paper presents a human tracking and 3D pose esti-

mation algorithm for use with a pair of 360◦ cameras. We

identify and track an individual throughout complex, multi-

person scenes in both indoor and outdoor environments us-

ing appearance models and positional data, and produce

a temporally consistent 3D skeleton by optimising a skele-

ton of realistic joint lengths over joint positions produce by

Convolutional Pose Machines (CPMs). Our results show an

average improvement of 22.67% over state of the art deep

learning approaches for tracking, as well as reasonable es-

timates for pose using just two cameras.

1. Introduction

Human motion capture has become an integral part of

modern entertainment production and biomechanics, as well

as being a key research area within Computer Vision. At-

tempting to accurately find the joint locations of an indi-

vidual or group of actors within a performance space is a

difficult task, but one that is often required in the production

of television and film content. Traditionally, this capture is

done using marker-based techniques, wherein the perform-

ers wear some form of suit or markers that allows cameras

to track them. However, this approach is limited by the very

markers it uses. As an alternative, markerless techniques

have been devised[5][15][21], where performers can use any

clothing or costume, freeing them to concentrate on their

performance.

Critically, these techniques are constrained to capture

volumes; areas where the cameras can record the perfor-

mance. This is achieved by arranging cameras and other

capture equipment in a square or ring around a designated

area, and movement outside of this area results in either

accuracy reduction or failure to track, due to less cameras

being able to view the performer. This effectively creates

an “outside-in” system, with a hard limit on the capture

volume. We therefore propose a system using a pair of

360◦ cameras that can track human motion throughout a se-

quence and then produce a temporally consistent 3D skele-

ton. Given the natural advantages of omni-directionality, we

do not suffer “out of shot” problems in the same sense as

a traditional camera setup, and as such, we create a capture

system with a pair of cameras at the centre of the scene, and

whose capture volume is restricted only by the resolution of

the cameras.

We therefore present our work, which aims to make two

contributions:

• A robust tracking algorithm that operates in a 360◦ im-

age space across a pair of cameras, capable of tracking

an individual from a multi-person scene

• A 3D skeletal position solver that takes joint estimates

from two 360◦ cameras to produce a temporally con-

sistent body pose in 3D space

2. Related Works

Our proposed system can be split into two stages, the

tracking algorithm and the body pose reconstructor. Hu-

man tracking can be defined as following a specific individ-

ual throughout a scene recorded from one or more cameras,

and providing a location of that person either in 2D space

(within the frame of a specific camera), or in 3D space (rel-

ative to the cameras). More specifically, a tracking algo-

rithm needs to identify potential human shapes within the

scene, then track by association of human observations over

time. A robust tracking algorithm should be capable of re-

identification[8], where tracking of the individual should

continue even when the subject cannot be seen, or moves

into a different camera view.

Tracking algorithms thus far have concentrated on per-

spective images, providing limited fields of view from which

the subject can easily leave. This contrasts with 360◦ cam-

eras, where the subject can only leave the camera view

through occlusions. However, the large field of view comes

at the cost of much reduced resolution, as well as projec-

tion issues, which require any tracker to be flexible enough

to cope with distortions introduced by projection (such as

those that can occur when an individual goes around the rear

of the camera).

3D Motion capture, meanwhile, can be defined as tak-

ing the movements of a specific individual within a scene

and accurately reconstructing the pose at each frame. More

specifically, we need to identify the individual body com-

ponents (as joints, body segments etc.), calculate their 3D
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Figure 1. System overview of person matching and tracking component

position and use the information to reason about the loca-

tion of any unidentified points, thus estimating the full 3D

pose in each frame.

As with tracking algorithms, motion capture systems

have used perspective cameras to define a capture volume.

This volume has the advantage of being (generally) well de-

fined, however it suffers from the problem that it needs to

be large enough to capture the whole scene. 360◦ cameras,

meanwhile, allow the capture volume to extend out from

them, being limited not by the location and fields of view

of the cameras, but rather by the resolution of the cameras.

2.1. Human Tracking in Video

Until fairly recently, tracking has been accomplished

through hand crafted features. Kahn et al. [14] uses a se-

ries of cameras with overlapping fields of view to track in-

dividuals. This is achieved by determining the field of view

limits of each camera then discovering their relative 3D po-

sitions. This allows people to be tracked between cameras

without relying on colour models or calibration information,

although this requires an individual to ‘prime’ the system

before use. Zhou and Hoang[35] perform a background sub-

traction to identify individuals in the scene, with an attempt

to remove shadows cast from the remaining image. They

then describe each person in terms colour, direction, veloc-

ity and relative size to match them temporally. This system

runs in near realtime, although it is limited to a single cam-

era.

More recently, Danelljan et al. [6] utilise a joint trans-

lation and scale tracker. At a given frame, translation and

scale changes are jointly calculated based upon the previ-

ous position and scale. The respective translation and scale

models are then updated and used in the next frame, giving

rapid tracking capabilities on any dynamic component. Tak-

ing a different route, Zhang et al. [34] make use of an online

SVM that is updated after each frame, as well as a series of

entropy minimisation systems, each with a different learn-

ing rate so as to prevent the system from reinforcing poor

results.

As with other fields, deep learning has had a profound

impact on tracking algorithms. Nam and Han[22] being

one of the first to exploit this with a Multi-Domain Network

(MDNet). They use a relatively small 7-layer network, not-

ing that larger networks tended to give lower performance.

Insafutdinov et al. [13] also propose a deep learning ap-

proach, but combined with traditional techniques, creating a

combined top-down/bottom-up solution. Joint proposals are

made throughout the scene in a bottom up manner, but these

are then combined with edge and feasible skeleton propos-

als, as well as temporal consistency. The work of Fernando

et al. [9] moved to create a tracker for use in real-time appli-

cations. Each frame is processed by a lightweight Genera-

tive Adversarial Network, using an object pool to create both

a short and long term memory which can then be utilised for

trajectory tracking and prediction.

While all of these tracking algorithms are effective, they

all suffer from the problem that they are designed to work

on perspective images, and as such were not built to deal

with 360◦ images that introduce both distortion and image

wrapping.

2.2. 3D Human Motion Capture

Early attempts to capture human motion without the use

of markers was made using multi view stereo methods, uti-

lizing numerous cameras in a calibrated fashion[20][24].

Carranza et al. [4] takes silhouettes produced from 7 cali-

brated cameras and optimises a pre-constructed human body

model to them, minimising the energy required to move to

the next frame to infer temporal consistency. Starck and

Hilton[26] perform a visual hull reconstruction using 16

cameras and a chroma-key background, then refine the vi-

sual hull using detected keypoints.

De Aguiar et al. [7] take calibrated sequences from 8

cameras and fit a pre-scanned mesh to them using keypoints

matched across the body. This allows them to capture a per-

former in loose clothing, although this requires a laser scan

of the performer to be completed in advance. Similarly, Vla-

sic et al. [30] also use a mesh fitting approach, although

in this case the mesh was fitted to silhouettes and a tem-

plate skeleton, and requires manual editing after processing

to tidy the mesh.

Liu et al. [17] moves away from a mesh approach and

uses pre-scanned copies of each individual to create an artic-

ulated skeleton. These skeletons can then be fitted into 2D

segmentations from each image, which contain 2 or more

people in close proximity. Thus, the segmentation and skele-

ton fit are jointly optimised and then used to import the pre-

scanned models. Trumble et al. [27] applies a deep learning
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approach, taking multiview stereo data and constructing a

probabilistic visual hull to which joint positions are fitted.

Marcard et al. [29] expands from traditional multi-view

stereo and combined the visual information with Inertial

Measurement Units (IMUs), allowing occluded joints to be

tracked across all input frames. Trumble et al. [28] applies

both video and IMU data to a deep learning approach, us-

ing Long Short Term Memory to reduce temporal noise, and

Malleson et al. [19] takes input video and IMU data to create

a robust and temporally consistent skeletal fitting system.

Combining depth information with video input has also

been used to good effect. Shotton et al. [25] takes large

quantities of synthetic RGB-D data and uses it to train a se-

ries of Random Decision Forests, which in turn are used to

provide per-pixel classification from an RGB-D image. Wei

et al. [31] similarly use a single RGB-D camera to estimate

pose by splitting a detected body into 15 rigid segments,

with movable joints connecting them. Each pixel is given

a likelihood of belonging to a specific section, then a skele-

ton is fitted to these segments.

Ichim and Tombari[12] also take a single RGB-D camera

and attempt to fit a series of body-blend shapes to the frame,

combined with temporal consistency from previous frames

to explicitly track body parts. More recently, Xu et al. [32]

developed MonoPerfCap, a system capable of creating a full

body model from a single handheld RGB camera, taking an

initial mesh of the individual in a t-pose and then applying

that mesh to any new footage.

All of these contributions, however, have limitations

that cannot readily be overcome when using 360◦ cameras.

Specifically, they require either highly accurate calibration

information, and/or depth information. Additionally, the

representation of 360◦ images introduces distortions that

these systems cannot account for.

2.3. 360◦ Imagery

While the above techniques all work well within the per-

spective images for which they were designed, they gener-

ally fail when presented with 360◦ imagery, either due to

distortions introduced or by image discontinuity (such as

on the edges of equirectangular or cubic representations).

There has been relatively limited work on tracking people in

360◦ images. More specifically, during our review, no track-

ing algorithms could be found that specifically operated on

360◦ images. As such, we will review a range of wide angle

and 360◦ works.

One of the earlier attempts at fisheye reconstruction was

Li[16], taking two 190◦ fisheye cameras to create a dispar-

ity map based reconstruction, allowing for basic head move-

ment motion. However, this method requires highly accurate

camera calibration to be established, something that can be

difficult for full 360◦ cameras. Chuiwen et al. [18], created a

full 360◦ reconstruction using a pair of 360◦ cameras across

a short baseline. Images are projected into cube maps, a

small set of matches are manually made, which were then

used to guide future matches. This process produces a re-

construction, but suffers from needing both manual corre-

spondences to be established, and for a ground truth calibra-

tion to be provided. Fowler et al. [10] presented work aimed

at providing a human centric affordance map from a single

360◦ camera. An individual is identified in each frame, with

depth estimated from neck length. Then, the individuals ac-

tivity is broadly identified (walking, sitting, standing etc.)

and their action, along with position and depth, and used to

produce an affordance map, as well as a 3D scene recon-

struction of the respective surfaces. It is limited, however, to

2D per frame pose estimation of a single individual and does

not reconstruct 3D pose nor handle multiple individuals.

Rhodin et al. [23] mount two floor-facing fisheye cam-

eras above the performer, estimating 3D pose using a be-

spoke ConvNet to estimate local pose, and Structure from

Motion algorithms to place that local pose in a global scene.

Xu et al. [33] expand upon this, using only a single camera

mounted on the peak of a baseball cap, and a CNN archi-

tecture to estimate pose, albeit without global scene place-

ment. While both approaches free the performer from a stu-

dio, both suffer from the performer being constrained with

sensitive head-mounted equipment.

3. Methodology

Our proposed method is divided into two components.

Initially, two temporally aligned 360◦ video sequences

of a scene with multiple people are taken and individu-

als are tracked across the 2D image sequence. Once we

have the these tracks, joint locations are estimated using

OpenPose[3] and are used to create a 3D skeleton relative

to the two camera positions.

Initially, we must define the notation for working with

360◦ images. We describe equirectangular images in terms

of −180◦ ≤ θ < 180◦ and −90◦ ≤ φ ≤ 90◦, with the left

edge of the image being θ = −180◦ and increasing as we

move to the right, and the top of the image being φ = 90◦,

decreasing as we move down the image.

As such, for a given pixel x, y on an equirectangular im-

age of height h and width w, we can find the θ, φ angles

using eq.1 and eq.2 respectively.

θ(x) =
x

w/360
− 180 (1)

φ(y) = −

(

y

h/180
− 90

)

(2)

3.1. Person Matching

Our initial problem is one of data matching across mul-

tiple views. Given a pair of synchronised video frames fαn ,

fβn , where α, β are cameras that are horizontally disjoint,

and whose extrinsics are known, and n is the frame number,

we want to match the same person p (from the set of all peo-

ple, P ) across both frames. We segment each frame using

Mask RCNN[11], producing two sets of segments, Sα
n , Sβ

n

for fαn , fβn respectively. For each segment sn at frame n, we

assign an angle θsn relative to the camera by taking the x
coordinate of the centroid of the segment.
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Figure 2. Example of triangulation from cameras α, β of segments i, j

We then match in ∈ Sα
n , jn ∈ Sβ

n , (where in, jn are in-

dividual segments normalised to a constant height and pro-

portional width) using the cost function in eq.3

C(in, jn) = col(in, jn) + scale(in, jn) (3)

where col(in, jn) is the colour similarity between two seg-

ments, in, jn and scale(in, jn) is the distance of the two

segments relative to the distance between the cameras.

The colour similarity metric is defined as

col(i, j) = colglo(i, j) + colreg(i, j) + colloc(i, j)

and measures the similarity of the segments i, j at three dif-

ferent scales, in order to account for differing resolutions

of the segment between the two cameras. Generally, these

measures work by exploiting the observation that, excluding

the face, human subjects are generally similar in appearance

irrespective of viewing angle about the vertical axis.

For the global similarity term colglo(i, j), we construct

a histogram Hs of B = 20 bins from segment s by taking

each pixel in hue-saturation-value colour space, and plac-

ing the pixel in a bin according to it’s hue value. We then

compare the two histograms using

colglo(i, j) = Φglo ·

(

B
∑

k=0

|ηik − ηjk|+

B
∑

k=0

|δik − δjk|

)

where k is an index, ηsl is the hue component of bin l of

the histogram Hs for segment s, and δsl is the saturation

component of bin l of the histogram Hs for segment s. Φglo

is a pre-defined weight applied to the measure, empirically

we found Φglo = 2 to work well.

The region similarity metric first splits the segment s into

b = 4 equal sized horizontal bands. We then take the median

hue µs
ǫ and the median saturation νsǫ for each band, where ǫ

is the band number. From this, we calculate colreg(i, j) as

colreg(i, j) = Φreg ·

(

b
∑

k=0

σ(µi
k, µ

j
k) + ||νik, ν

j
k||

)

where k is an index, where ||v1, v2|| is the l2 norm between

v1 and v2, and σ(θ1, θ2) is the shortest circular distance be-

tween two angles as defined in eq.4

σ1 = θ1 − θ2

σ2 =

{

σ1 + 360 : for σ1 ≤ 0
σ1 − 360 : for σ1 > 0

σ(θ1, θ2) = |min (σ1, σ2)| (4)

Φreg is a pre-defined weight applied to the measure, empir-

ically we found Φreg = 1 to work well.

Our detail orientated metric, colloc(i, j) is defined simi-

larly to colreg . However, rather than compare broad regions,

we compare individual rows of the segment. Given a nor-

malised segment height of κ, colloc(i, j) is the proportion of

rows that are similar in both hue and similarity

colloc(i, j) = Φloc ·

(∑κ

k=0
l(k)

κ

)

where Φloc is a pre-defined weight applied to the measure,

empirically we found Φloc = 3 to work well, and

l(k) = σ(µi
k, µ

j
k) < λ ∧ ||νik, ν

j
k|| < ζ

with λ = 10 and ζ = 50 being threshold values and provid-

ing good discriminative capabilities.

The second component of C(i, j) is scale(i, j), and is

defined as

T = max(τ(i, j, α), τ(i, j, β))

scale(i, j) = Φscale ·

{

T/ρ : for T < ρ
ρ/T : for T ≥ ρ

(5)

where Φscale is a pre-determined weight applied to the mea-

sure, empirically we found Φscale = 1 to work well, ρ is the

distance between the two cameras α and β, and τ(i, j, c)) is

the distance to the triangulation point of θi, θj from camera

c (see figure 2)
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3.2. Person Tracking

Once all of the segments in fαn , fβn have been matched,

we then track an individual pairing by comparing properties

between frames. We achieve this by using the cost function

in eq.6

F (sn, sn−1) = app(sn, sn−1) + pos(sn, sn−1) (6)

where sn is a segment at frame n, app(sn, sn−1) compares

the appearance of the two segments, and pos(sn, sn−1)
compares the position against the expected position.

The appearance metric uses the region matching metric

from section 3.1, and is defined as

app(sn, sn−1) = ΦP ·colreg(sn, sn−1)+ΦO ·colreg(sn, s0)

where ΦP ,ΦO are pre-defined weights, for which we found

2 worked well for both. This metric therefore balances the

relative appearance of the segments throughout the frame, as

well as ensuring the appearance matches that of the original

segment, so that mis-identification can be minimised.

The position metric is defined as

pos(sn, sn−1) = ΦD ·D(sn, sn−1) + ΦA ·A(sn, sn−1)

where

D(sn, sn−1) =
∣

∣ιsn −
(

ιsn−1
+
(

ιsn−2
− ιsn−1

))∣

∣ ,

A(sn, sn−1) =
∣

∣θsn −
(

θsn−1
+ σ

(

θsn−2
, θsn−1

))∣

∣

ιs is the height (in pixels) of a segment, and ΦD,ΦA are

pre-defined weights applied to the measure, we found 1 and

2 respectively to work well.

An additional check is made that if eitherD(sn, sn−1) or

A(sn, sn−1) is 0, or if F (sn, sn−1) < 0.6, no match will be

made.

By using the above matching on both camera images

fxn−1
, fxn , we produce a matching set Πx

n for camera x be-

tween fn−1 and fn, which we augment with a pairing set be-

tween the cameras on frame f , achieved exactly as the initial

inter pairing (section 3.1). In the ideal case, our inter-frame

matching set and the inter-camera matching set agree, how-

ever in the event they do not, the inter-camera matching set

with the lowest cost is selected, and the other matching set

is rejected. With our correspondence determined, we then

perform a triangulation between the θs of each segment s in

each camera to confirm the match has validity in physical

space.

3.3. 3D Skeletal Pose Estimation

Once an individual has been tracked in each frame, we

can estimate the 3D skeletal pose. For each frame, we iso-

late each individual using the segment produced from sec-

tion 3.2 and estimate the joint locations using OpenPose[3].

This gives us a set of joints ωc
o ∈ ψc, where c is the camera

providing the image, and o is the joint number.

From these joints, we can then perform a naı̈ve triangu-

lation in all cases where ωα
o and ωβ

o both exist, producing

Dataset MDNet[22] Ours

Occluded Crate 89.2% 98.0%

Double Square 8 55.6% 95.4%

Random Walk 35.0% 96.6%

Seminar Room 36.8% 71.0%

Outdoor 2 people 74.0% 85.0%

Outdoor 4 people 56.9% 58.1%

Outdoor 8 people 62.8% 64.9%

Table 1. Performance of the proposed algorithm

for each frame f a 3D joint position Ωo ∈ Ψ. By taking the

distance between specific pairs of o we can estimate bone

lengths lo. After performing this length estimate for each

frame, we sort the lengths and remove the highest and low-

est 10%, before taking the mean of the remaining lengths.

This is done in order to remove outlier bone lengths, such as

those produced when the joints are found directly between

the cameras. This gives us a reasonable estimate for each

bone length specific to the individual being tracked, rather

Figure 3. Examples from datasets. Top: Random Walk. Middle:

Seminar Room. Bottom: Outdoor 2 people

5



Dataset MDNet[22] Ours

Double Square 8 6 2

Random Walk 21 0

Seminar Room 32 6

Outdoor 2 people 0 0

Outdoor 4 people 0 1

Outdoor 8 people 2 4

Table 2. Number of track “jumps”

than using generic bone lengths or prior body models.

Once we have our joints and bone lengths, we perform a

gradient descent optimisation using Ceres[2] in order to find

a skeleton pose that best fits the set of joint estimates ωα

and ωβ while having fixed bone lengths l. We provide the

optimiser with a root point in 3D space (from section 3.2)

which is initally assigned to the neck point. From this point,

we use a series of axis/angle rotations (as per Malleson et al.

[19]) to describe the joint rotations, and combine this with

the respective fixed bone length lo to create a skeleton scaled

to the tracked individual, So, where n is the frame number

relating to the skeleton estimate.

In order to provide an element of temporal consistency,

and to handle error cases (where joints are either not identi-

fied, or mis-identified), we use the skeleton from the frame

fn−1 as the base skeleton for frame fn. We also project the

skeletal estimate back onto the input camera positions, pro-

ducing the projected joints rco, where c is the camera and o
is the joint number.

For each frame, we minimise the cost eq.7

λ(n) = λcv(n)
s + λmv(n)

s + λac(n)
s (7)

where λcv(n) =
∑O

o=0
||ωα

o − rαo || +
∑O

o=0
||ωβ

o − rβo ||
is the sum of the l2 norms between the visible

joints ωc
o and the projected points rco, λmv(n) =

(
∑O

o=0
||ωα

o − r′αo − ψα
o ||) + (

∑O

o=0
||ωβ

o − r′βo − ψβ
n||) is

the sum of the l2 norms between the joints ωc
o and

the projected points from the previous frame r′co , mi-

nus the average movement of the joints ψc
o over the se-

quence, and λac(n) =
∑O

o=0
|σ(r′′αo , r′αo )− σ(r′αo , r

α
o )| +

|σ(r′′βo , r′βo )− σ(r′βo , r
β
o )| is the sum of the acceleration dif-

ference between r′′co , r
′c
o (the projected joints from fn−2 and

fn−1) and r′co , r
c
o (where angular difference is calculated us-

ing equation 4).

O is the total number of joints (in our case, 18), s is used

to scale error to the scene size, empirically we found s = 2
to work well for indoor scenes, and s = 0.5 for outdoor

scenes, with this weight being sensitive to change.

4. Evaluation

We evaluate our algorithms separately, so as to better

identify any weaknesses of the individual algorithms. Each

algorithm was tested on a series of datasets comprising a

range of scenarios, three indoor (studio) scenes, one indoor

(non-studio) scene and three outdoor scenes. Each dataset

was captured using a pair of Ricoh Theta V[1] cameras,

plus a third Ricoh Theta S camera for evaluation purposes

only, all placed at a consistent height. A manually annotated

ground truth was produced for each dataset.

Of the three studio scenes (figure 3, top), Occluded Crate

is a 1 person scene comprising one person walking behind

a stack of crates, Double Square 8 is a 3 person scene with

2 people walking and one person in the background, and

Random Walk is a 4 person scene with all 4 people walking

randomly about the scene. The baseline between cameras is

3.6 metres.

Seminar room (figure 3, middle) is the non-studio in-

door scene, comprising 5 people walking randomly about

the scene. It contains several difficult occlusions, includ-

ing double occlusions (where neither camera can observe a

given individual). The baseline between cameras is 2.4 me-

tres.

The three outdoor scenes (figure 3, bottom) comprising

differing numbers of individuals (2, 4, 6) moving parallel to

the cameras. In each case, all individuals are in the front

180◦ of the camera, due to space restrictions. The baseline

between cameras is 3.5 metres.

4.1. Tracking

To assess our algorithm, we compare it’s accuracy against

both a manually annotated ground truth, as well as against

state of the art human tracking algorithms designed for

perspective images[22] (since no tracking algorithms were

found for 360◦ videos). Positive frames were defined as

those where the method correctly determined the person to

track, or that the person did not appear in the frame (due to

occlusion), and an overall accuracy was given for a scene

from the total number of positive frames as a proportion of

the total number of frames.

As shown in table 1, our tracking algorithm gives good

results in a studio environment, with an accuracy consis-

tently about 95%, even when subjects are occluded or in

scenes containing multiple subjects. Accuracy takes a small

drop for our highly crowded Seminar Room dataset. For

outdoor scenes, accuracy drops due to the poor resolution

of the individuals, combined with similar colours for coats

worn. Conversely, MDNet[22] appears to have very poor

performance indoors, rising in the outdoor scenes. This is

due to MDNet being unable to track the full 360◦ range,

stopping at the image edge. The outdoor scenes, given their

180◦ nature, confirm this, as accuracy increases on these as-

sessments.

Additionally, we also tracked the number of times the

tracker “jumped” from one individual to another. We for-

mally defined a “jump” as any situation instance where

the tracker moves onto a different person for more than

15 frames, excluding occlusions. MDNet demonstrated a

propensity to “jump” during occlusions (table 2, as well as

at the frame extremities (due to nature of the equirectangu-

lar representation), and generally didn’t return to it’s origi-

nal target unless it moved close to it’s current target. Con-

versely, our tracker remained much more stable even as the
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Figure 4. Example of a 3D pose estimate as viewed from the test camera, from Seminar Room

Dataset Triangulation Ours

Occluded Crate 37.03 55.16

Double Square 8 410.96 82.36

Random Walk 228.29 160.49

Seminar Room 645.16 205.06

Table 3. Average error (pixels) of technique against ground truth

subject became occluded or moved around the “rear” of the

camera (i.e. moving off the left/right edge of the image and

onto the opposite edge).

4.2. Body Position

In order to assess our 3D skeletal estimate, we make use

of the ground truth camera, synchronised with the initial two

source cameras. As with the source cameras, we estimate

the joint positions using Openpose, then project the skeletal

estimate onto the ground truth camera. Error is then assessed

as the l2 norm between the projected estimate, and the Open-

pose joints, normalised throughout the scene to prevent error

being linked to distance from the camera. This suffers from

the problem that Openpose itself is an estimate, however

each ground truth frame is checked for mis-identification

before assessment. The results are compared to a naı̈ve tri-

angulation, since no pose estimation systems could be found

using only a pair of cameras without additional information

(depth, IMU’s etc.). Our results can be found in table 3, and

an example estimate can be seen in figure 4.

5. Conclusions

We have presented a combined tracking and 3D pose es-

timation system, operating in 360◦ space and capable of

producing realistic 3D poses in both controlled and uncon-

trolled conditions. Our colour model matching operates well

in conjunction with positional matching in order to avoid

“jumping” at occlusions, while keeping a colour model from

the initial frame stops the tracker reinforcing itself when it

does begin tracking the wrong individual. Our pose esti-

mation also works well, producing skeleton estimates that,

while not state of the art, are produced from just two cam-

eras.

Our work is not without limitation, however. Our use of

colour modelling makes the system less suitable for either

crowded scenes or events with large amounts of similarly

coloured individuals (such as sporting events). Our 3D pose

estimation also suffers from a lack of input, and is highly

vulnerable to either mis-detection or no data during occlu-

sions. Our future work should therefore concentrate on these

weaknesses, either through the addition of cameras or by im-

proving the colour model.
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